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A method for the constuction of combined 10 and 11 Runge-Kutta schemes is described here. The embedded order 10 scheme is provided
with the aim of it being used for error control in the standard manner. The method of construction of these schemes is motivated by a 10(9)
scheme due to Tom Baker at the University of Teeside.

When the construction reaches the stage of requiring equations derived from the order conditions, the order conditions used at each step
were selected from those that remained to be satisfied after the preceding step. Details of how this was achieved can be seen by viewing
Maple worksheets which are available online.

The parameters that determine the specific schemes described here were obtained from a random search followed by a lengthy process of
minimization of the principal error norm.
The coefficents for the 2 schemes listed here are given in separate documents.

We first indicate how to construct a 25 stage order 11 Runge-Kutta scheme.
Step 1:

The stage-orders of stages 3 to 25 are given as follows.

We specify the following stage-orders for stages 3 to 25.
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We start by considering the rows 2 to 16 in the Butcher tableau of the order 11 scheme.
We have the following stage-order conditions involving the nodes ¢; and linking coefficients a; ;.
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We also have zero linking coefficients as indicated by the following tableau.
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We can use this information to obtain certain relations involving the nodes ¢, to c.
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Introducing the relation ¢, = ? ¢, allows the equations (vi), (vii) and (viii) to produce the relations
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The equations (ix) and (x) in conjunction with the relations ¢, = ; c; and ¢, = 39
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where M is a real zero of the degree 6 polynomial
P(z) = 28000 z° — (117600 + 16804/ 10 ) 7° + (6090 4/ 10 +203910) z* — (188700 + 8700 4/ 10 ) 2> + (99969 + 62764/ 10 ) 7* —
(29250 + 23404/ 10 ) z + 3690 + 3604/ 10..



This polynomial has two real zeros with the approximate values 0.46400913396513 and 0.90501790944446.
Equation (xi) gives rise to a relation of the form
¢5=0¢
where 0 is a real zero of the cubic polynomial
S(z)=d, 2’ +d, 2" +d, z+d,,
with
dy =42 (4000 m° - 168001 — 2401’ 4/ 10 + 8701 4/ 10 +29130 0" — 1500 4/ 10 — 32100 1° + 26367 0 + 1668 ° 4/ 10 — 14625 1

- 1170 m+/ 10 + 3690 + 3604/ 10 ),

d, =35 (4000M°-2401’4/10 — 16800’ + 48330 1" + 1470 n" 4/ 10 — 33001 4/ 10 — 72300 ° + 3258 04/ 10 + 52452’
— 1170 4/ 10 — 14625 1),

d, =200 (560M°—84174/10 —5880 M + 12327 * +357n* 4/ 10 =462 1’ 4/ 10 — 10122 ° + 2961 n* + 189 1> 4/ 10),

dy=4200 (801°=210m°=310°4/10 +61*4/10 + 1920 =31’ 4/10 —601*).

We take

1 ~ 0.9050179094444592302850092001266376783360386842107738556985099105305710627647138909540
and choose the largest of the three resulting values for 6, namely

6 ~ 1.900460407318210405781574017326160583594516445668076545674045253102940120877393399745.

Specifying the nodes ¢, and c; allows all the nodes and linking coefficients in stages 2 to 16 to be calculated.

Step 2:
We specify the nodes c;, cg, ¢y, the linking coefficients ayg |5, a9 13, @9 13 and the zero linking coefficients
a;;=0, j=2..10, i=17,18,19.

The stages 17, 18 and 19 have stage-order 7. Thus the following conditions hold.
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for i=17,18,19, k=1..6.

j=1 j=2
This allows all the linking coefficients in stages 17, 18 and 19 to be obtained.

Step 3:
We specify the remaining nodes c,y, €5, Cpys Cp35 Cpys Co5 =1 and the weight b,..

We also require that b,;=0, i=2..14. Then we can obtain all the remaining weights by using the order 11 quadrature conditions:

25 25

k 1
Dib=1. Db = k=1..10,

i=1 i=1

Step 4:

The stages 20 to 25 all have stage-order 7. Thus the following conditions hold.
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for i=20..25, k=1..6.
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After specifying the zero linking coefficients a; ;=0 for j=2..10, i=20..25, these equations provide linear relations among the
linking coefficients in stages 20 to 25.
We can obtain linear expressions for 42 of the linking coefficients with the following 33 linking coefficients remaining as parameters.

ty » i=13,15,19, ay ,i=13,15,19,20, ay, ,i=12,13,15,19,20, a,; ,i=12,13,15,19,20,22,
(yy »i=12,13,15,19,20,22,23, ay ,i=12, 13,15, 19,20, 22, 23, 24.



Step 5:
A system of equations arising from the 7 column simplifying conditions

D bia,,=b(1-c), j=13,15,19,20,22,23,24.
i=j+1
can be solved to give linear expressions for a,, 13, dy) 15, Gy1 195 Ga1 200 G25. 200 Gas.23 s, 24

By means of substitution we obtain linear expressions for 49 linking coefficients with the following 26 linking coefficients remaining as
parameters.
Ay » 1=13,15,19, ay, ,i=12,13,15,19,20, a,, ,i=12,13,15,19, 20, 22,
ay, »1=12,13,15,19,20,22,23, a,s,,i=12,13, 15,19, 20.

Step 6:
A system of equations arising from the 5 order conditions
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By means of substitution we obtain linear expressions for 54 linking coefficients with the following 21 linking coefficients remaining as
parameters.

Ay » i=13,15,19, @y, ,i=12,13,15,19,20, a,; ;,i=13,15,19,20, a,, ,i=13,15,19,20,23, a, ,i=13,15,19,20.

Step 7:
A system of equations arising from the 4 order conditions
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can be solved to give hnear expressions for @y, 15, @y 13 A3 13 Goy 23

By means of substitution we obtain linear expressions for 58 linking coefficients in terms of the 17 linking coefficients
Ay » 1=13,15,19, ay, ,i=15,19,20, ay ,i=15,19,20, a,, ,i=13,15,19,20, a, ,i=13,15,19,20.

Step 8:
An equation arising from the order condition

i Jj- k—1
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j=4 19 k=3 2 6160
can be solved to give a linear expressions for “23, 15+

By means of substitution we obtain linear expressions for 59 linking coefficients in terms of the 16 linking coefficients
Ay » 1=13,15,19, ay, ,i=15,19,20, a, ,i=19,20, ay, ,i=13,15,19,20, a, ,i=13,15,19,20.

Step 9:

We now specify values for 5 of the linking coefficients in rows 24 and 25, namely Ayy 155 Gy, 190 Gos, 15 o5, 190 o5, 20

By means of substitution we obtain linear expressions for 64 linking coefficients in terms of the 11 linking coefficients
Ay p 1=13,15,19, ay ,i=15,19,20, a, ,i=19,20, a,, ,i=13,20, a5 5



A system of equations in the 11 variable linking coefficients can be constructed from the 11 order conditions

Z bc, [Zl, a; [le, a, Ck?D =$, Z b, c, [Zi a; [le, a, {kZi a cfm =55ﬁ,

Jj=3 k=2 Jj=4 k=3 =2

STV (N ) IR Yy

Jj=4 k=3 l Jj=4 k=3 !

25 i-1 j=1 k-1 1
5
E bi Ci{z ai'j{z aj’ka[ akVICl JJJ: 4752’

j=4

E:ja
MI
|| M_

{k l [ { [n_ l JJJJJJ

3 1
i k ak 1 al m an, ) € = .
=5 m=4 p=2 nr 665280

The resulting equations have respective degrees 2, 2, 2, 2,2, 3,2,2, 3,2, 3 in the 11 variables and so would be extremely difficult to solve
analytically. However, the system can be solved by using the multidimensional version of Newton's method if initial values are provided.
In many cases it is sufficient to take the initial value for each of the 11 variables to be zero.

A given order 11 scheme is determined by specifying values for the 19 coefficients

Jj=17

€3 Ci3s Cips Cigs Cros Cagr Cops Cons €35 Coss Gy 170 Ao 170 Ao 150 Dass Gos 150 G 190 Gas 150 Gas 190 Gas 2
In searching for order 11 schemes with reasonable characterstics one may change the values of these 19 parameters incrementally and use
the values obtained at a given stage for the 11 coefficients which occur as the variables in the system of non-linear equations to be solved in
the last step of the construction of the scheme as starting values for Newton's method in the determination of the coefficients for the next
scheme.

Once an order 11 scheme has been constructed, an embedded scheme order 10 scheme can be obtained by adding a 26th row of linking
coefficients. We specify that cys=1, ay ;=0 for i=2..10, b* =0 for i=2..14. We set b*,;=0 and give a value for b*,; which
means that the scheme is essentially a 25 stage scheme.

A system of equations can be constructed using the order 10 quadrature conditions together with the row-sum condition for the additional
26th stage and the stage-order conditions that ensure that this stage has stage-order 7, that is,
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In choosing a value for b*,, we try to ensure that the stability region of the embedded order 10 scheme is compatible with that of the order

11 scheme. We make the order 11 scheme into a 26 stage scheme by specifying that b, = 0.
The system of 17 equations can be solved to express the weights b*, and b*, for i=15to 23 in terms of b*,, .
Additionally, the linking coefficients a,, | and a, ;, i =11 to 16 can be expressed as linear combinations of the linking coefficients

@y ; for i=17..25. The column simplifying conditions

D, b¥a=b% (1=-c), j=17..25,

i=j+1

can now be used to determine the linking coefficients a,q ; for j=17..25 in terms of b¥y,.
This enables all the linking to be expressed in tems of b*,,.
Finally, b*,, can be determined by using the single order condition

S| S|

Jj=2
The stage-orders of stages 3 to 26 of the combined scheme are as follows.
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stage-order |

The principal error norm of an order 11 scheme constructed in the manner described can be calculated using 45 of the 4766 principal error

terms. These error terms are given in an abreviated form as follows.
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The principal error norm can be calculated as Z d;e; , where e, is the value of the ith error term above and d, is the ith member of
i=1

the sequence

2,2,2,6,4,6,22,30,22,22, 66, 156, 282, 44, 66, 330, 156, 156, 468, 2052, 312, 468, 2340, 3102, 2052, 2052, 6156, 39432, 21996,

4104, 6156, 30780, 39432, 118296, 950112, 289332, 591480, 950112, 2850336, 28905348, 14251680, 86716044, 1028434308,

32474566307, 1.

The following sets of parameter values determine schemes with the given characteristics.

1. Scheme A.
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The order 11 scheme has a principal error norm  0.16737047 x 10( ) and the real stability interval [-2.86308, 0].
12

29°
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The order 10 scheme has a principal error norm  0.52127319 x 10( ) and the real stability interval [-2.86322,0].

The weight that determines the order 10 embedded scheme is b*,, =

The stability regions of the two schemes are shown in the following picture in which the stability region of the order 10 scheme is given the
darker shade.
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The following picture shows the result of distorting the boundary curve of the stability region of the order 11 scheme horizontally by
taking the 11th root of the real part of points along the curve.
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The stability region intersects the nonnegative imaginary axis in the interval [0, 2.03877 i].

The maximum magnitude of the linking coefficients is 17.134789.
The 2-norm of the linking coefficients is 34.757959.

2. Scheme B.
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The order 11 scheme has a principal error norm 0.90151732 x 10(_7) and the real stability interval [-3.30296, 0].

The weight that determines the order 10 embedded scheme is b*,, = ?3

The order 10 scheme has a principal error norm 0.27684033 x 10(_6) and the real stability interval [-3.30285,0].

The stability regions of the two schemes are shown in the following picture in which the stability region of the order 10 scheme is given the

darker shade.
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The following picture shows the result of distorting the boundary curve of the stability region of the order 11 scheme horizontally by

taking the 11th root of the real part of points along the curve.

06 -02 9 paps

The stability region intersects the nonnegative imaginary axis in the interval [0, 2.503825 i].

The maximum magnitude of the linking coefficients is 65.498252.
The 2-norm of the linking coefficients is 178.17428.
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